Emerging Topic Detection for Organizations from Microblogs

Yan Chen*, Hadi Amiri+, Zhoujun Li* and Tat-Seng Chua+

*State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
+School of Computing, National University of Singapore, Singapore

The 36th Annual ACM SIGIR Conference.
Dublin, Ireland. 28th July-1st August, 2013.

8/22/2013
Outline

• Background
• Organization-related Data Selection
• Hot Emerging Topic Detection
• Experiments and Analysis
• Conclusion and Future Work
Outline

• Background
• Organization-related Data Selection
• Hot Emerging Topic Detection
• Experiments and Analysis
• Conclusion and Future Work
Background

• Microblog Services
 – Interaction
 – Feature
 Real time
 – Users
 Individuals
 Organizations
 eg: banks, universities, government organizations, and so on.
Background

Optus
@Optus
We’re here to hear from you. If you’ve got questions or just something you’d like to tell us, we’re online Monday-Friday from 9am to 8pm & Saturday 9am-5pm AEST
Australia · http://www.optus.com.au

Telstra
@Telstra
We’re here to provide customer support and answer any Telstra questions you might have whenever it works for you - 24 hours a day, 7 days a week!
Australia · http://www.telstra.com.au

Vodafone Australia
@Vodafone_AU
Follow us for all the latest network news, product and service announcements, and special promotions. For help and support, please tweet @vodafoneau_help.
Australia · http://www.vodafone.com.au
Motivation

- Organizations expect to:
 - Track the evolution of any identified relevant topics.
 - Be informed of any new emerging topics.

- Hot Emerging Topic
 - Novel
 - Hot and viral in the near future
Overview of framework

- **Stages:**
 - Data crawlers
 - Classification
 - Live topic detection
 - Live hot emerging topic detection
Focus and Contributions

• A multi-source crawling strategy

• Techniques for hot emerging topic detection
Outline

• Background
• Organization-related Data Selection
• Hot Emerging Topic Detection
• Experiments and Analysis
• Conclusion and Future Work
Organization-related Data Selection

- Fixed keywords
 - Organization Name
 - Brands
 - CEO
- Known accounts
- Dynamic keywords

Graph:
- Dynamic Keyword Crawler
- Fixed Keyword Crawler
- Known Account Crawler
- Classifier
- Relevant Tweets Repository
- Dynamic Keywords

Keywords:
- Organization Name
- Brands
- CEO
- Known Accounts
- Organization Official Accounts

8/22/2013
Dynamic Keywords Generation

• Definition:
 – Newly introduced representative terms.

• Methods:
 – Foreground \([t-T]\]
 – Background
 \([t-2T, t-T],\)
 \([t-T]\) of previous day
 \([t-T]\) of one week ago
 – Chi-square distribution

\[
\chi_i^2 = \begin{cases}
\frac{(f_i-b_i)^2}{b_i} + \frac{(100-f_i)-(100-b_i))^2}{100} \text{ if } f_i > b_i; \\
1 \text{ if otherwise.}
\end{cases}
\]

– Rank top N as dynamic keywords
Organization-related Data Selection

- **Fixed keywords**
 - Organization Name
 - Brands
 - CEO

- **Known Accounts**
 - Organization official accounts

- **Dynamic Keywords**

- **Org Keyusers**
Graph-based Org Keyusers Generation

• Organization user relationship graph
 – **Nodes**: known accounts, all users posted at least one organization relevant tweets, their friends and followers;
 – **Edges**: social relationship between nodes.

• Method
 – A time interval T (e.g.: 24 hours)
 – A subset of users U - post at least one relevant tweets in $[t - T, t]$
 – Incorporating the activity degree (tweeting times in current time interval) of user into graph by a Pagerank similar algorithm.

\[
auth(u_i) = \alpha \sum_{u_j \in \text{follower}(u_i)} \frac{auth(u_j)}{|\text{following}(u_j)|} + (1 - \alpha) \frac{|Tw_{\Delta t}^{u_i}|}{|Tw_{\Delta t}|},
\]

 – Top N from U as key users
Outline

• Background and Motivation
• Related Work
• Organization-related Data Selection
• Hot Emerging Topic Detection
• Experiments and Analysis
• Conclusion and Future Work
Topic Detection

• A single-pass incremental clustering algorithm
Features for Hot Emerging Topic Detection

• Frequency Rate based features:
 – Increasing rate of users number
 – Increasing rate of tweets number
 – Increasing rate of retweets number

• Influence based features:
Topical User Authority

• Observations
 – Posted many tweets about topic tp;
 – Posted more tweets retweeted by other users in U_{tp};
 – More followers in U_{tp}.

$$\text{auth}_{tp}(u_i) = \beta \frac{r_{ui}}{\sum r_{uj}} + \varphi \frac{f_{ui} + 1}{\sum f_{uj}} + \omega \frac{q_{ui} + 1}{\sum q_{uj}},$$

– r_{ui} is the total number of relevant tweets posted by u_i;
– f_{ui} is the total number of u_i's followers who exist in U_{tp};
– q_{ui} is the total number of u_i's relevant tweets retweeted by others;
– weighting parameters
Topical Tweet Influence

• Observations
 – Be retweeted by a higher number of times;
 – Posted by a topic authority user;
 – Have the potential to influence more users.

\[auth_{tp}(tw_i) = \log(1 + auth_{tp}(u_{tw_i})) + \sum_{u \in U_{rtw_i}} \log(1 + auth_{tp}(u)), \]

• Term score
 – By tweets that appeared in;

\[Weight_{tp}(w_i) = \frac{\sum_{\forall tw_j \in Tw_{tp} \land w_i \in tw_j} auth_{tp}(tw_j)}{\sum_{\forall w \in W_{tp}} \sum_{\forall tw \in Tw_{tp} \land w \in tw} auth_{tp}(tw)} \]
Features for Hot Emerging Topic Detection

• Frequency Rate based features:
 – Increasing rate of users number
 – Increasing rate of tweets number
 – Increasing rate of retweets number

• Influence based features:
 – The overlap of Org key users and Topic key users
 – The overlap of Org keywords and Topic keywords
 – The Influence of the tweets’ accumulated score
Hot Emerging Topic Detection

• Two factors
 – Insufficient training data
 – Imbalance of positive and negative data

• Semi-supervised classifiers
 – Co-training Classifier
 – Semi-Ensemble Classifier
Semi-supervised Classifiers

• Co-training Classifier
 – Features divided into two views

• Semi-Ensemble Classifier
 – Voting based
Outline

• Background and Motivation
• Organization-related Data Selection
• Hot Emerging Topic Detection
• Experiments and Analysis
• Conclusion and Future Work
Datasets

<table>
<thead>
<tr>
<th>Organization</th>
<th>Time Duration</th>
<th># Tweets</th>
<th>#Users</th>
<th>#Emerging Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>StarHub</td>
<td>10 Oct - 9 Nov, 2012</td>
<td>51,708</td>
<td>15,792</td>
<td>24</td>
</tr>
<tr>
<td>DBS</td>
<td>15 Oct - 14 Nov, 2012</td>
<td>130,791</td>
<td>44,454</td>
<td>17</td>
</tr>
<tr>
<td>NUS</td>
<td>14 - 27 Oct, 2012</td>
<td>142,091</td>
<td>36,973</td>
<td>5</td>
</tr>
</tbody>
</table>

![Graph](image)
Performance of Topic Detection

![Bar chart showing F1 scores for different organizations: StarHub, DBS, NUS. The chart compares four methods: TM (black), TOT (red), NN-Dict (blue), and CL (purple). The F1 scores range from 0.6 to 1.0.](image)
Performance of Hot Emerging Topic Detection

<table>
<thead>
<tr>
<th>Methods</th>
<th>Organization</th>
<th>Recall</th>
<th>Precision</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL+En</td>
<td>#(message)</td>
<td>0.93</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td>CL+TSVM</td>
<td></td>
<td>0.86</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>CL+Semi-NB</td>
<td></td>
<td>0.86</td>
<td>0.71</td>
<td>0.77</td>
</tr>
<tr>
<td>CL+En</td>
<td></td>
<td>0.89</td>
<td>0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>CL+TSVM</td>
<td></td>
<td>0.89</td>
<td>0.73</td>
<td>0.80</td>
</tr>
<tr>
<td>CL+Semi-NB</td>
<td></td>
<td>0.89</td>
<td>0.67</td>
<td>0.70</td>
</tr>
<tr>
<td>CL+En</td>
<td></td>
<td>1.00</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>CL+TSVM</td>
<td></td>
<td>1.00</td>
<td>0.50</td>
<td>0.67</td>
</tr>
<tr>
<td>CL+Semi-NB</td>
<td></td>
<td>1.00</td>
<td>0.42</td>
<td>0.73</td>
</tr>
</tbody>
</table>

\[T_L = t_{hot} \]
Performance of Hot Emerging Topic Detection

<table>
<thead>
<tr>
<th>Methods</th>
<th>Organization</th>
<th>Recall</th>
<th>Precision</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL+En</td>
<td>#(message)</td>
<td>0.71</td>
<td>0.83</td>
<td>0.77</td>
</tr>
<tr>
<td>CL+TSVM</td>
<td></td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>CL+Semi-NB</td>
<td></td>
<td>0.71</td>
<td>0.67</td>
<td>0.69</td>
</tr>
<tr>
<td>CL+En</td>
<td>DBS</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>CL+TSVM</td>
<td></td>
<td>0.78</td>
<td>0.70</td>
<td>0.74</td>
</tr>
<tr>
<td>CL+Semi-NB</td>
<td></td>
<td>0.78</td>
<td>0.64</td>
<td>0.70</td>
</tr>
<tr>
<td>CL+En</td>
<td>NUS</td>
<td>0.67</td>
<td>0.50</td>
<td>0.57</td>
</tr>
<tr>
<td>CL+TSVM</td>
<td></td>
<td>0.67</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>CL+Semi-NB</td>
<td></td>
<td>0.67</td>
<td>0.40</td>
<td>0.50</td>
</tr>
</tbody>
</table>

$T_L = t_{mid}$
Emerging Feature Analysis

![Graph showing F1 scores for different features]

- **StarHub**
- **DBS**
- **NUS**

Features: t_{hot}

- f
- $-f1$
- $-f2$
- $-f3$
- $-f4$
- $-f5$
- $-f6$
Example

Topic 1: NUS Fire

Topic 2: Unveils government public cloud

Topic 3: add new channels to cable TV

Threshold
Outline

• Background and Motivation
• Organization-related Data Selection
• Emerging Topic Detection
• Experiments and Analysis
• Conclusion and Future Work
Conclusion

• Introduced **four sources of crawling** the organization data from multiple perspectives.

• Extracted **non text emerging features** to discover hot emerging topics.

• Developed **semi-supervised learners** to facilitate timely identification of hot emerging topics for organizations.

• Detected close to **90%** of hot topics with a precision of over **70%**. This is an encouraging results for hot emerging topic detection.
Future work

• Extend framework to general entities (e.g. People, Location, Events)

• Topic summary for end users.
Thank you!

Q&A